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Interacting neural networks
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Several scenarios of interacting neural networks which are trained either in an identical or in a competitive
way are solved analytically. In the case of identical training each perceptron receives the output of its neighbor.
The symmetry of the stationary state as well as the sensitivity to the used training algorithm are investigated.
Two competitive perceptrons trained on mutually exclusive learning aims and a perceptron which is trained on
the opposite of its own output are examined analytically. An ensemble of competitive perceptrons is used as
decision-making algorithms in a model of a closed matkéfarol Bar problem or the Minority Game. In this
game, a set of agents who have to make a binary decision is consjdeesth network is trained on the history
of minority decisions. This ensemble of perceptrons relaxes to a stationary state whose performance can be
better than random.

PACS numbgs): 84.35+i, 07.05.Mh, 02.50.Le

Simple models of neural networks describe a wide varietyrithms. In Sec. IV we apply the system of interacting net-
of phenomena in neurobiology and information theory. Neuworks to a problem of game theory called the Minority
ral networks are systems of elements interacting by adaptivéame, which is derived from the El-Farol Bar problem
couplings which are trained by a set of examples. After train{9,10]- In this game, we consider a set of agents who have to
ing they function as content addressable associative memocr})',‘ake a binary decision. Each agent wins only if he/she be-
as classifiers, or as prediction algorithms. Using methods ngcgjs éo tﬁe mmorr]lty of 3" dTC'S'OnS'l Th!sh procr?s?] IS |}<er—
statistical physics many of these phenomena have been el ted. Each agent has to develop an algorithm which makes a

. ; s o ecision according to the history of the global minority de-
CId'?/Itedtar:a(ljytlcalI%/ffor(;nfflnltelydlarge nleuratl neLworI][k'IsZ]. cisions. The problem recently received a lot of attention in
ost studies ot teed-forward neural neworks nave CoMya context of statistical physicsll]. Here we follow a

centrated on a single network learning a fixed rule, which 'ﬁmique approach: Each agent uses a perceptron for making
usually a second network, the so-called teacher. The teachgfs/her decision, and each perceptron is trained on the minor-

network is presenting examples, sets of input/output datgyy of all output bits.
and the student network is adapting its weights to this set of
examples. In an on-line training scenario each example is I. MUTUAL LEARNING, SYMMETRIC CASE
presented only once, hence training is a dynamical process
[3,4]. The teacher network may also generate a time series of |n this section we investigate a system of interacting neu-
output number§5,6], and the student learns by following the ral networks as follows: several identical networks are ar-
time series. The weights of the teacher network are fixed imanged on an oriented ring. All networks receive an identical
this scenario. input and produce different output according to their weight
Many phenomena in biology, social science, and comvectors. Each network is trained by the output of its neighbor
puter science may be modeled by a system of interactingn the ring. This process is iterated until a stationary state is
adaptive algorithmsgsee, e.g.[7]). However, little is known reached in which the norms and angles between the weight
about general properties of such systems. In this paper w¢ectors no longer change. We are interested in the properties
derive an analytic solution of a system of interacting neuraPf this stationary state.
networks. Each network is a simple perceptron with an We consider the simplest feed-forward networks, an en-
N-dimensional weight vector. These networks receive arg€mble ofK simple perceptrons, which are represented by
identical input vector, produce output bits, and learn from!\-dimensional weight vectorsy; (i=1,...K) and which
each other. In Sec. | each network is trained by the output gf?@P @ common input vectok onto binary outputso;
its neighbor, with a cyclic flow of information. By iterating =sgni-w;). As order parameters we use the norms
the training step for randomly chosen input vectors, the dy-:|Wi| and the respective overlapg; =w;-w; or cos(})
namical process relaxes to a stationary state. In the limit of Wi-W;/wiw;. When only two perceptrons are considered,
N— we describe the process by ordinary differential equatn€ Subscript is dropped: c@gEw, - w, /w,w,. The compo-
tions for a few order parameters, similiar to the usual?€Nts of the input vectdior patter are Gaussian with mean
student/teacher scenafi®,8]. We identify the symmetries of O @nd variance 1, yielding-x=O(N).
the stationary state and find phase transitions when increas- 1€ updates are of the form
ing the learning rate of the training steps. . W =wi+ (7 /N) (0 ,5)SX 1)
In Secs. Il and Il we study different training scenarios
with two interacting perceptrons and various learning algofor unnormalized weights or
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wt = w;+ (7, /N)f(o;,s)sX @) ! ) o 2 perceptrons, simulation
b wi+ (5 IN) (o ,5)sX| w 22
for normalizedw; . The + denotes a quantity after one learn- 051 Xgpemept,ons, analytical
ing step,n; is the learning rates is the desired output,and | “g oo 3
f(o,s), the so-called weight function, defines the learning & T ‘5‘
algorithm. We mostly usé=1 (the Hebbian rule, callet § o B
from now on and f=0(—a;s) (the perceptron learning RS ey
rule, abbreviated® [1]), and the respective variations where 2 -173
thew, are kept normalized, denoted Hs, and Py, respec- -05 -1
tively.
We derive differential equations for the order parameters T cocssacey
in the thermodynamic limiN— < by taking the scalar prod- o 1 > 3 4 5 6
uct of the update rules and introducing a time variable n/w,

=p/N, wherep is the number of patterns shown so far. We

use the analytic tools which were previously developed for FIG. 1. Mutual learning with ruleP (see Secs. IA and 1)C
the teacher/student scenafi3]. If the order parameters are comparison between Eqér) and (10) and the stationary state in
self-averagingsee[12] for criteria of self-averaging in this simulations withN =100 anda>75.

contex}, integrating over the distribution of patterns gives

deterministic differential equations for the order parametergsing the relatiorw=w, /[ 2 cos@/2)], this can be solved
asN—. The required averages are listed in the Appendixnumerically to give the fixed point of ca(as a function of

A. Perceptron learning rule

We first restrict ourselves to two perceptrons that try to

fe

come to an agreement by learning the output of the respe
tive other perceptron. For rule with identical learning rates
171.= 1= 7, the update rule is

NX(TZ@(_U].UZ)!

Wy =W+

)

Wy =W+ N

X010(— 01 05).

the scaled learning rate/wg, as shown in Fig. 1. For small
learning rates, the perceptrons come to good agreement,
while large n leads to antiparallel vectors.

Geometrically, this can be understood as follows: each
arning step has a component parallel to the plane spanned
by w; and w,, which decreases the distance between the
vectors, and a perpendicular component, which increases the
distance(see Fig. 2 Equilibrium is reached when a typical
learning step no longer changes the angle, i.e., the vectors
stay on a cone around;+w,. The radius of this cone in-
creases with growingy.

B. Perceptron learning with normalized weights

The sum of both vectors is conserved under this rule: if a

learning step takes place, it has the same direction and abso

lute value, but different signs for the two vectors. This con-
servation can be used to link; andw, to cos@): assuming
that w,=w,=w and starting froméy= /2, simple geom-
etry givesw,/\/2=cos@?2)w. The conservation is also vis-
ible in the differential equations that can be derived using th
described formalism:

2

dWl_ n 7

bo = _—277[1_005(9)]+2w17r’ 4

dw, n 7’0

d—a_—\/T—W[l—COS(H)P'm, 5)
dR_ 7 , 0
d—a—E[l—coi0>](w1+w2>—n — (6)

If the right-hand side of Eqg4) and(5) vanish, so does Eq.
(6). There is a curve of fixed points of the system given by
the equation

0

W 1-co90)’

__7

_A similar calculation can be done for the perceptron
learning rule with normalized weightsP{), where the
length w; of the weight vectors is set to 1 after each step.
The perceptrons move on a hypersphere of radius 1; in equi-
librium, the average learning step leads back onto that sphere

gefore the vectors are normalized again.

We derive the following differential equation foR
=cos():

W+ W,

L

FIG. 2. Mutual learning with ruld®: sketch of the geometrical
interpretation. See Sec. | A.
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da & m J2m 1—co%6) 1+ (K—1)cog6)

Fixed points ardR=1, R=-1, and
The largest angle that the perceptrons can take isdros(
7 0 _1 9 =-1/(K—1), corresponding to &-cornered hypertetrahe-
V27 1—cog6) T ©  dron. This happens whdXw;| is negligible with respect to
w; . Simulations confirm that Eq10) holds, as can be seen
in Fig. 1
Similar to the case of two networks, all perceptrons agree
with each other for small learning ratge— 0. For larger rates
of Eq. (9) can only be found fom< 7.=1.816, which cor- the system relaxes to a state of high symmetry where all
responds to cogf=—0.689. mutual angles between the weight vectors are identical,
Simulations show that the system relaxes to the fixedfij = ¢- Note that the symmetry is higher than the topology of
point given by Eq.(9) for 7< 7, and jumps toR=—1 for the flow of information(the ring. F_or hlg_h ratespy— o the
larger 7 (see Fig. 3 This behavior shows the characteristics SYStem relaxes to a state of maximal disagreement, i.e., the
of a first-order phase transition. largest ppssmle mutual angtethat is still compatible with a
Hence for small learning rates the two perceptrons relaxXYMMetric arrangement. o
to a state of nearly complete agreemeit 0. Increasingy For rulePy, the sum of the weights is not preserved. The

leads to a nonzero angle between the two vectors U to fixed point of the dynamics follows the curve for two nor-
~133°. At this rate the system jumps to complete disagree[nal'z_ed We!ghts Qescrlbed by E(®) in a completely sym- .
ment, =180°. metric configuration. When the hypertetrahedron angle is

reached and&w; vanishes, the symmetry is partly broken.
There are now different angles to nearest neighbors, next
nearest neighbors, etc., so the angles split up ikte 1)/2
different branches for od& and K/2—1 for evenK. Note

It is not a coincidence that this is equivalent to Eq.if wis
set to 1. The fixed point of Eq9) at R=1 is repulsive; the
one atR=—1 is unstable forp<4/\/27=1.60. A solution

C. Mutual learning on a ring

The mutual learning scenario can be generalized per-
ceptrons: perceptron learns from perceptron+1 if they that the system still has the symmetry of the ring.
disagree, with cyclic boundary conditions. Under rBlethe With odd K, increasingz increases the angle between
total sum of vectors is conserved again: as many perceptromearest neighbors, up to some limit value. This angle is not
take a step in one direction as in the opposite. the maximum nearest-neighbor angle allowed for by the geo-

Performing the necessary averages for the equations afietric constraints, but seems to decrease with incred&ing
motion would involve Gaussian integrals ou€r-1 corre- In the case of evei, simulations show a second transi-
lated variables with® functions—it is not clear to us tion at some higher value af, where the vectors split into
whether this can be done analytically in general cases. Howtwo antiparallel clusters, thus maximizing the nearest-
ever, we find in simulations that the fixed point for rilés  neighbor angle. The learning rate at which this transition
completely symmetric: there is only one angldetween all  typically appears during the run of the program increases
pairs of perceptrons. Assuming that relatigf still holds,  with N. The conclusion is that the antiparallel fixed point is
and using the conservation &fw;, one can derive not stable in theN— limit, but de facto stable in simula-
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tions because the self-averaging property of the ordinary dif- 10° R e .

ferential equation$ODESs breaks down at this point. 100 L N ]
One may ask which symmetries survive if the perceptrons w2 b )

are allowed to have different individual learning rates. A i °y

close look reveals that for rulB, there is a more general 104 i . 1

conserved quantity=Kw,/7;. Simulations show that the s O .

angles¢;; again relax to a completely symmetric configura- g 107 | E

tion depending on the averageand the initial value of the ¢ 10° L __ n=1,num. > 1

new conserved quantity, while the normsare proportional T A 2:}33 iy b ]

to the respective learning rates. For rulePy, variations in 10% [ om=1sim.

the learning rates not only lead to slightly different curves W b oons 107, sim. ]

for each of the angles with individually differen., they N ::ggz:g

also suppress the transition to the antiparallel state that is » .

observed for evei. 10 o e e e e e e

D. Hebbian learning FIG. 4. Mutual learning with ruléd: simulations withN=100

The reason why? and Py lead to antiparallel orientation show good agreement with Eq4.1), except for very small angles
of the weight vectors for larger learning rates is that theysé.
concentrate on cases where the networks disagree. Algo-

rithms that reinforce what both networks agree on are morepposite of the opinion of 1. This scenario describes a com-

successful, as can be seen for rhldor two perceptrons.  petition between two adaptive algorithms. If 2 is completely
The differential equations are successful, the overlap is c@#s€—1, and perceptron 1 al-

) ways fails in its prediction, and vice versa. A motivation
%: \/zcos( 0)+77_ from game theory can be drawn from the game of penny
da "N7 2w;’ matching, where both players make a binary decision simul-
(11  taneously. One player wins if the decisions are the same, the

other if they are different.
da—n\[(WﬁWz)ﬂ? 1——)
A. Rule P

This system has no common fixed point, which means that ) ) _
thew; grow without bounds. The asymptotic behawor can be [If both perceptrons use rulefor their respective learning

seen from the equation for ca@¥( Assuming thatw;= aim, the update rules are
=w, we find
WI:W1+(771/N)X0'2®(_0'10'2),
d cogq 6) 7 5 7 26 (13
da W \/_[1 Cosa) ]+_ 1- Coie)_ . W;:WZ_(ﬂle)XO':L@(O'lO'z)-
(12)

The corresponding differential equations for the order pa-
By taking w~ \2/7na, the ODE leads to +cos@)xa *  rameters are

for a—oe. This means thab« a2
Simulations agree with the numerical integration of Egs.

(12), with the exception of very large and correspondingly dw, i[l—cos{ 0)]+£ E
. L . . -3
small ¢ (see Fig. 4 This is not surprising, since the da 27 2w, 7’
decay is an effect of patterns that are classified differently.
As long as the perceptrons give the same output on all pat-
terns,w,; andw, grow linearly, but the differencev;—w, %__ 72 [1+cog8)]+ 7]2 (1_ ﬁ) (14)
does not change, leading t=«a 1. This is observed in de 2 2w, :
simulations for small angles, where no patterns happened to
be classified differently on the considered timescale. Math-
ematically, this is related to a breakdown of the self- dR 71W>o 7oW1
averaging properties of Eqél1) at the pointd=0. da” 2n F=l1-codf)]-—=—= 2 [1+cog6)].

Il. MUTUAL LEARNING, COMPETITION . . . .
The common fixed point for these equations Vg

In the previous section, all of the neural networks behave= 27 #,/4, cos@)=0. This is hardly surprising, since none
in the same way. Each perceptron tries to learn the output aff the perceptrons has a better algorithm than the other. The
its neighbor, and only the initial weight vectors are choserlearning rate only rescales the weight vectors; the ratio
randomly and differ from each other. Now we investigate az;/w;, which determines how fast the direction wf in
scenario where two networks behave differently. Network lweight space can change, is independentyddt the fixed
is trying to simulate network 2 while 2 is trained on the point.
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B. Rule H
The picture is slightly different if both perceptrons learn

from every pattern they see. The resulting differential equa-

tions are
dw; \/E 77
da = N mcod 9)+2_vv1’
dw, \/E 7]%
da - N7 cog 9)+2—W2, (15
dR 2 2
da_ N 77Wa— \ —7aWi— nn(T—20).

The fixed point of R is reached if 6=m/2 and n,/w;
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D= O OG Os
QQ’O‘G ©<0 oy OINN

0.5

cos(6)

— P

N analytical

-0.5

=n,/w,, i.e., the vectors are perpendicular and the scaled FIG.5. Competing learning aims with normalized weighjsis

learning ratesy; /w; are the same for both perceptrons. Un-

der these conditions, the equations ¥grcan be solvedw;
= mila+ (Wi o/ 71)21*2 sow; shows the/a scaling typical

for random walks. Geometrically, the Hebb rule adds correc
tions to the weight vector that are on average parallel to th

set to 1 whilen, is varied. The analytical curves are fixed points of
Egs.(18), (19), and(20), respectively.

whereas perceptron 2 incorporates all of then, 1 wins the
gompetition: the perceptron using ritehas a smallery/w

teacher vector. Since the teacher is moving at the same afftio and is thus less flexible.
gular velocity as the student, the movement of both vectors

resembles a random walk. Again, only sets the temporal
and spatial scale.

C. Rule P versus ruleH

The result of the competition becomes more interestin

when both perceptrons use different algorithms. For ex

ample, we let perceptron 1 use rie while 2 usesH. The

derivation of the differential equations is again straightfor-

ward,
dw; 71 7]%
da —%[1—005(9)]4' 2w,
dw. 2 5
To=- \/;7;2005{6)4- 2—\;2 (16)
dR \/E 71W> 71726
da_ N Z7aWit —%[1_005{ )]+ —
They have a common fixed point defined by
cog0)®  w
[1-cog6)]* 4
71 0
W= o, 1
v 27 1-cog0) (19
27

W= Cog )

These equations can be solved numerically and yield&os(
= 0.459,w,= 0.806n,, andw,=1.377,. Although percep-

D. Normalized weights

By setting the weights to 1 after each learning step, a new
length scale is introduced, leading to a more complex depen-
dence of the solution on the learning rates. For brevity, we

nly give the differential equations for the different learning
Tules and explain some common features. If both networks
use rulePy, the ODE is

dR

1
da_ \/T—Tr[m(l—R)— 7(1+R)]

+ \/%[ﬁl(l_RH' 72(1+R)]

R > 2
_5[7710‘*' ny(m—0)], (18
for rule Hy we find
dR 2 ) R ,
@: ;(ﬂz_ﬂl)(R_l)_E(ﬂl"‘ﬁz)
20
—mna| 1= — |, (19

and if rule Py is used by perceptron 1 andy by 2, the

equation is
dR \F 5 m 77 0
d_a_R( ARGt =R

7

V2w

+

(20

1-R \F + i
( ) ;772 771772;-

The behavior of the fixed point is similar in all the following

tron 1 makes no use of many of the presented patterngasegsee Fig. %
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(i) If, say, 7, is fixed andz;—0, R goes to a valuRR dw, 2 7>

# —1. This is expected, since boky andHy only achieve ==\ Z7t5—,

- . da T 2Wq

finite values ofR for fixed teachers.
(ii) If both perceptrons use the same algorithm with the 2

same learning rate, the resultRs=0, as expected. L \/= 4 24
D = . 7c0< 6) : (24)
(iit) If n—oo for eitheri, R—0. Infinite learning rate da ™ 2w,

means that in every time step the perceptron discards all the

information it previously had, replacing it with the current d_R_ \E [Wy— W, cog 8)]+ 72

+x. Theoretically, that makes it predictable for the other da  Vgz/thi—H2 7

network; in practice, both agents are confused. The notable
exception is the case &y vs.Hy, where a nonvanishing  defined by w, ;=27 7/4 and w,;=— 27 7n/[4 cos@)].

results if bothz;— o with a finite ratio z/7,. The solution is given by the initial condition, i.e., the initial
sum |w;+ws,|. The fixed point angle can be calculated by
IIl. CONFUSED TEACHER applying the cosine theorem to a triangle with side lengths

Wis, Wy, and|w;+w,|; starting from perpendicular vec-

For any prediction algorithm there is a bit sequence fortors of normw,, one finds
which this algorithm fails completely, with 100% errdr3].

In fact, such a sequence is easily constructed: Just take the
opposite of the predicted bit at each time step. In RE3] a
perceptron was used for the prediction algorithm.

Here we do not consider bit sequences. However, it turn&eometrically, for large learning rate both norms become
out that many statistical properties of the prediction algo-much larger thanwg; the only way to achieve this while
rithm are similar when random inputs are used instead of &eeping the sum constant is a large angle. For smallv;
window of the antipredictable bit sequence. Hence we conbecomes very small compared to the sum, and thust&o
sider the following scenario: Preceptron 1 is trained on thehe direction ofw, stays nearly unchanged whilg, per-
negative of its own output. Perceptron 2 is trained on theorms its random walk, leading to nearly perpendicular vec-

16
1+ —
a

Wo

cog )= —

21-112
} (25)

output of perceptron 1. tors on average.
This is similar to the teacher/student model where the
teacher weight vector performs a random w@k But here B. Rule P

the teacher is “confused”; it does not believe its own opin-
ion and learns the opposite of it.
The update rule of perceptron 1 now only depends on it

If perceptron 2 uses rulB, the sum of the vectors is not
gonserved, and a simple geometrical interpretation is not
possible. However, the equations of motion can still be

own output,
P solved,
+_ —
Wl _Wl (77/N)X0'1 (21) dWl_ \/5 7]2
Geometrically speaking, the vector performs a directed ran- da A
dom walk in which every learning step has a negative over-
lap with the current vector. An equilibrium length is reached dw, i 7?
when a typical learning step leads back onto the surface of an da _\/ﬂ[l_ cog 6)] +2_W2 P (26)
N-dimensional hypersphere. This fixed pointwf is easily
calculated to be
—=1\/—nco ———(1-¢c)—np°—.
W, = 27 5/4=0.6267, (22) da 77608 ool T
and the weight vector typically moves on the surface of aThe fixed point of cog) is given by the solution of /=
hypersphere of that radius. =[1+cos(@)]? independent fromy. The numerical solution
is #=0.777r, cos@)=—0.761,w,=0.5525 (in accordance
A. Rule H with Ref. [13], where a special case of this problem was

hat h i d . oll h solved. Remarkably, the generalization error is larger than
What happens if a second perceptron tries to follow thésge, eyen the “smarter” perceptron learning rule predicts

output of the confused teacher? Again, the results depenfle penhavior of the confused teacher with less success than
entirely on the used algorithm. The simplest case, the Heb ndom guessing would.

rule, also has a geometrical interpretation that is revealed by

a look at the update rule, ) )
C. Optimal learning rule

wy =w;—(9/N)xoy, This raises an interesting question: is there any “reason-
(23 able” algorithm for perceptrons that allows them to track the
w2+=w2+(77/N)X(rl. confused teacher, i.e., an algorithm that is not aware of the

teacher’s self-avoiding motion but tries to find it assuming it
As in Sec. | A, the sum of both vectors is constant, so therds stationary? If there are such algorithms that achieve a posi-
is a class of solutions to the ODEs tive overlap, one of them has to be the rule that optimizes
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FIG. 6. Confused teacher: Even with the optimal weight func- FIG. 7. Confused teacher: If the teacher is slowed down by
tion (27) the student only achieves an overlap of @s{0. Starting  normalizing its weight, it can be tracked by a student using, e.g.,
values arev;=w,=2m/4, cosp)=1, n=1. Simulations are per- rule Hy. The figure shows the fixed point of E1) and simula-
formed withN=2000; the statistical error is smaller than the size oftions with N=100.
the symbols.

overlap with the confused teacher. However, a shrewd stu-
student-teacher overlap in each time step—the optimatlent could use a learning rule that learns the opposite of the
weight function derived by Kinouchi and Catich#4]: teacher’'s output to achieve a positive overlap, and thus a
prediction accuracy of more than 50%.
w, tan( 6) ex{ (X-W,)?

 —— —
RN = 2 tar(0)2 w2

D. Rule Hy

There is another way of achieving a positive overlap with
X , (27)  the confused teacher with simple learning rules: if the
P{ox-wy /[wp tan(0) ]} teacher perceptron is “slowed down” by keeping its weights

: . normalized and settingy to some small value, a student us-
where ®(x)=[* , exp(—Z/2)/\27 dz If w, is set to its '
fixed point for simplicity’s sake, the calculation yields the ing Py or Hy can track the teacher nearly perfectly for very

' ] small learning rates. For simplicity’s sake, let us conskdgr
following ODEs for cos¢) andw,: with identical learning rates. The differential equation Ror

1

dcog6) 1 sin(6)? 2 - 1S
da _E coq 6) B ‘/27TW1COS(0), dR \/E 2
} a—(R-ﬁ-l) ;(1—R)n—7] . (31
Wy W )
da Etar( )71, 29 Tne fixed points ar®= —1 or R=— 2/ »+ 1. This result
is again confirmed by simulations as seen in Fig. 7. The fixed
where point goes to 1 ag)—0.
_ Jx 1 IV. PERCEPTRONS IN THE MINORITY PROBLEM
—on27

The concept of interacting neural networks can be applied
p( 1+cog 6)2 2) 1 . ':EOI zla\:prolbIIBem thaLlhiigr]ec_le_zQ/ed mtl;lCh attentior! r_eCﬁntI_y: the
xXexp — _ X X. arol Bar proble . The problem was originally in-
2sing)® | PL=xcot ) ]P[xcotd)] spired by a popular bar that has a limited capacity: if too
(30) many people attend, it becomes crowded, and patrons do not
enjoy the evening. In a more special formulation, each agent
Calculating whether cogf=0 is in fact a fixed point of the out of a population ofK decides in each time stef@ach
confused teacher and/or optimal student scenario is problensaturday eveningto take one of two alternativego to the
atic, since the optimal weight functio(7) diverges até  bar or stay at home Those agents who are in the minority
=m/2. However, the numerical solution of Eg®8) and  win, the others lose. Decisions are made independently; the
(29) shows clearly that even starting from c@st1, the sys- only information available to agents is the decision of the
tem evolves toward#= 7/2, which indeed seems to be the minority in the lastN time steps.
upper limit for success. Simulations of the learning process Many papergsee, e.g.[11]) investigated a specific real-
again agree well with our theorigee Fig. 8. ization of the model called the Minority Game. In this model
The previous examples have shown that learning rulegach agent has a small number of randomly chosen decision
that work well with a stationary teacher give negative or zeradables(Boolean functionsthat prescribe an action based on
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the previous history, and which of the tables is used is de- 2 1/ KX K K

cided according to how successful each one was in the Ay 1+ E Sgn(x- w;)sgnx-w;)
course of the game. It turned out that the success of the game =1 =17

depends on the ratio between the number of players and the ) C2- 1K -1)
size of the history window, and general conclusions on the :1+(K—1)[1— ;arcco{

I
X

behavior of crowded markets were drapib,16. C%+1 - 39

We will discuss a different approach that yields different
behavior: Each ageitis represented by a perceptranthat  If Cis setto 0 and is large, a linear expansion of the arccos
uses the time serieS§=(S;,S_1, .. . ,.S_n+1) Of past mi-  term in Eq.(33) gives angK~1—2/wz 0.363. The small
nority decisions to make a prediction on the next time step. lanticorrelationgof order 1K) between the vectors suffice to
then learns the output of the minority according to somechange the prefactor in the standard deviation.
learning rule. If Cis much larger thary, there is a strong correlation
In our approach all of the agents are flexible in their de-between the perceptrons. Most perceptrons will agree with
cisions. Each agent uses an identical adaptive algorithrthe classification by the center-of-mass sgif). As C
which is trained by the history of the game, the only infor- — o, ¢?/K saturates akK.
mation available to each of the agents. However, each agent
uses a different randomly chosen initial state of its network. B. Hebbian learning
If all weight vectors of the networks would collapse, all . , .
agents would make the same decision, and all would lose. If . NOW €ach perceptron is trying to learn the decision of the
all weights remained in the random initial state, each agenfflinority according to ruleH. S denotes the majority deci-

would make a random guess which yields a reasonable per'°"-

formance of the system. Our calculation shows that training N
can improve the performance of the system compared to the — \y+— . — - D —w—Tys
W, =w, stg 2 sgnx-wj) [ =w, MX .
random state. =1
Following Ref.[17], we replace the histor§, by a ran- (34)

dom vectorx. Simulations show that this changes the result
only quantitatively, if at all.

This strategy fulfills the restrictions that the original prob-
lem posed: the agents do not communicate except throu

*As the same correction is added to each weight vector, their
mutual distances remain unchanged. Only the center of mass
'ﬁ shifted. We now treaC as an order parameter:

majority decisions, and individual decisions are based on ex- K W

perience(induction or learning rather than perfect knowl- C*:E —'—ix s, (35)
edge of the systertdeduction. However, since each player =1 N M

uses only one strategy whose parameters can be fine-tuned to 5

the current environment rather than a set of completely dif- c2r—Cc2— ﬁx- cSt n (36)
ferent strategies, no quenched bias in the players’ behavior is N N

to be expected.
To average ovex- CS in the thermodynamic limit, we intro-

duce a fieldh=x-C and average ovex for fixed h:
A. General notes on performance
K

x'CS=|h|sgr(E sgrih)sgrix-g+h) . (37)

The commonly used measure of collaboration in the mi-
nority problem is the average standard deviation of the sum
of outputs of all agents:

i=1
) K ) The quantity sgrif)sgn- g,+h) is a random variable with

o° 1 > 3p Mean erf(h|/\2) and variance % erf(|h|/\2)?. In a linear

K K\\& i ' (32 approximation for small|h|, we replace this by mean

\J2/7|h| and variance 1.

For sufficiently largeK, one can use the central limit theo-

If each agent makes random decisions, one géi&=1. rem to show thatiﬁlsgn(h)sgnoogﬁh) becomes a

The probability of two perceptronisand]j giving the same . : . .
output on a random pattern is-19, /. Any ensemble of Gaussian random variable with mea®/7K|h|. Since the

rms of the sum in Eq37) are anticorrelated rather than

vectorsw; (E(an be thogght of as centered around a center ¢ dependent, the variance turns out to be-@im)K rather
massC=2_,w; /K with a normC (for randgm vectors of o1 K, analogously to Eq(33). This yields
length 1,C would be of order 1{K). The weights can then
be written asw;=g,+C, with = ,g;=0. For the sake of K
simplicity, we will assume a symmetrical configuration with <sgr( > sgnh)sgn(x-gi+h)
gi=1 andg,-gj=—1/(K—1) fori+j.[An ensemble of ran- =t
domly chosen vectors of norm 1 would gigg=1—1/K
+O(1/4Y/N) andg;- gj=— 1/K =O(1/YN).] Sinceh is a Gaussian variable with mean 0 and varia@ée

The average overlap between different weights is iow the average ovenS can now be evaluated. We find the fol-
=C2-1/(K—1), their average nornw;=./C?+1. With  lowing differential equation for the norm of the center of
this, Eq.(32) can be evaluated mass:

> =erf[ VK/(7—2)|h[].

(39
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FIG. 8. Fixed point ofC vs #: simulations withN=100 agree
well with Eq. (40). The limit for K— is C= 27 5/4. FIG. 10. Using a modifiedPy algorithm improves the results,
compared to Fig. 9. Simulations again ude 100.

dc? 4y 2KI(m=2) ., ) _ _
—_—=- C+ 7. (39 o°/K. This can be understood in the extreme casblofl:
da V2 ¥ 1+ 2K(7—2)C?

Each perceptron is characterized by one number; the out-
come is decided by whether the majority of numbers is
smaller than O or larger, regardless of the “pattern.” The
learning step consists of shifting all numbers up or down by

the same amount. In the case of smgllthe fixed point is
m 16(m—2) characterized byN—1)/2 players firmly on one side of the
C=—np\/1+\/1+— (40)
4 K 5?

The fixed point ofC, which can be plugged into E¢33) to
get a?/K(7,K), is

origin, (N—1)/2 on the other side, and one unfortunate loser
who changes sides at every step.

Interestingly, if the time series generated by the minority
decisions is used as patterns, the functioR6C) andC(7)
are quantitatively different from those found for random pat-
terns. However, in the final result?(z) no disagreement

(see Figs. 8 and)9If C is large, the majority of perceptrons

will usually make the same decision & which then be-

haves like the single confused perceptr@i- 27 5/4 if

K 7>—oe, compare to Eq(22). : ;
For small C the majority may not coincide with can be noticedsee Fig. 9. . S

sgn- C). In that case, the learning step has a positive over- The presenteq 'I-!ebb alg'o.rlthm may appear too simplistic

lap with C. leadin toC,oc\/— as m—0 and the chosen initial conditions too artificial. It must there-
pThe de7rivationggiven isnonlyncorréct Koo and K is fore be emphasized that there are other learning algorithms

larde. However. simulations show verv good aareement eVethat lead to the same anticorrelated state. In particular, a
forgK.—Zl andN’— 100 (see Fig. 9 Foréimalle?number of Variation of rule Pn has proven successful in simulations

SN e 9. (see Fig. 10 all perceptrons that are on the minority side
dimensionsN, there is even a tendency towards smaller

take a learning step, and weights are kept normalized. The

7 , _ regular ruleP where perceptrons on the majority side move,
—— K=21, theory / however, leads to strong clustering amé/K < K.

6 & iﬁjglngsfs 8 ] The absence of scaling behaviolNf>K and the fact that
_ K=51,theory # smaller dimensiongcorresponding to smaller memory of the

5 | OK=51,time series / time serieg even improve the results show that the conclu-

+ K =51, random x sions drawn from the “conventional” Minority Game do not

A4t 1 apply to all conceivable strategies for the Bar problem. We
jé think that the dependence @f’/K on the ratio between

V3| 1 available strategies and players is caused by the use of

quenched strategies and will not arise in any scenario in

2 1 which agents stick to one strategy which is fine-tuned by

some learning process. The caseNof 1 implies that there

random guessing are strategies that give?/K«1/K. We will elaborate this

1-2/n point in another publication.
0 L L
0 0.5 1
n V. SUMMARY
FIG. 9. Fixed point ofo?>/K vs 7: the combination of Eq¥33) We have investigated several scenarios of mutually inter-

and (40) shows that sufficiently small learning rates lead to acting neural networks. Using perceptrons with well-known
diK<1. on-line training algorithms in the limit of infinite system
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size, we derived exact equations of motion for the dynamicélichael Biehl, Liat Ein-Dor, Andreas Engel, Georg Reents,
of order parameters that describe the properties of the sysnd Robert Urbanczik for helpful discussions.
tem. In the first scenario a systemkfperceptrons is placed
on a ring. All perceptrons receive the same input and each APPENDIX
perceptron is trained by the output of its neighbor on the ] ) )
ring. We have used two well-known training algorithms: the ~ The following averages are used in our calculations to
perceptron rule which concentrates on examp|es where tH&rive deterministic differential equations from the Update
networks disagree, and the Hebbian rule where each exampleles. The angled brackets denote averages over isotropically
changes the weights. We find that with unnormalizeddistributed pattern vectors. In the limN—o, w;-x and
weights the system relaxes to a stationary state of high syn¥2-X are correlated Gaussian random variables, and the av-
metry: each perceptron has the same overlap with all other§rages can be calculated by integrating over their joint prob-
The overlap depends on the learning rate: with increasingbility distribution with appropriate boundaries. In many
i the perceptrons increase their mutual ang|e as much &£8Ses, Simple geometrical calculations give the same result
possib'e_ W|th IeSS effOI’ti

For the perceptron learning rule with normalized weights
we find phase transitions with increasing learning rmaté&or Nl oW
large values ofy, the symmetry is broken, but the symmetry (x-wy 020(=0102)) \/ﬁ[l cosf)], (A1)
of the ring is still conserved. For the Hebbian rule we find a
different behavior. The lengths of the weights diverge, the 0
mutual angles shrink to zero, and the perceptrons eventually (X-XO(—010,))=N—, (A2)
come to perfect agreement in the limit of infinitely many &
training examples.

We furthermpre stud_y the_ behaviqr of percept_rons that (x-W, 01®(0102)>=£[1+cos( 01, (A3)
pursue competing learning aims for different learning algo- V2
rithms. If two perceptrons follow mutually exclusive learn-
ing aims using the same algorithm, a draw results. If they use
different rules, the outcome depends on factors like the res- (X’X@)(Ule)):N( 1- ;), (A4)
caled learning ratey/w. We find that a perceptron that learns
the opposite of its own prediction cannot be tracked by a >
student perceptron that learns the positive output of the con- (X-Wy 1) = \/ =Wy, (A5)
fused teacher: all rules achieve a negative overlap. ™

Finally an ensemble of interacting perceptrons is used to

solve a model of a closed market. Each agent uses a percep- 2
tron which is trained on the decision of the minority. Our (X-Wy 09)= ;Wl cog9), (AB)
analytic solution shows that the system relaxes to a station-
ary state Which yields a good performancg of _the system for 2w, sin( )2
small learning rates;. In contrast to the Minority Game of (fopp=—"—=—= "7 (A7)
Refs. [11] our approach leads to identical profits for all V2 cog6)
agents in the long run. In addition, the performance of the
algorithm is insensitive to the size of the history window (foptX- Wy 0r1) =0, (A8)
used for the decision.
This paper is a first step towards more complex models of © 1 1+ cog 6)? )
interacting neural networks. We have presented analytically I= f ﬂc\/ﬁex - Tf‘(ﬁ)zx

accessible cases which may open the road to a general un-
derstanding of interacting adaptive systems with possible ap- X {®[ —x cot( §) ]P[x cot( #)]} ~1dx, (A9)
plications in biology, computer science, and economics.
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