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Interacting neural networks
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Several scenarios of interacting neural networks which are trained either in an identical or in a competitive
way are solved analytically. In the case of identical training each perceptron receives the output of its neighbor.
The symmetry of the stationary state as well as the sensitivity to the used training algorithm are investigated.
Two competitive perceptrons trained on mutually exclusive learning aims and a perceptron which is trained on
the opposite of its own output are examined analytically. An ensemble of competitive perceptrons is used as
decision-making algorithms in a model of a closed market~El Farol Bar problem or the Minority Game. In this
game, a set of agents who have to make a binary decision is considered.!; each network is trained on the history
of minority decisions. This ensemble of perceptrons relaxes to a stationary state whose performance can be
better than random.

PACS number~s!: 84.35.1i, 07.05.Mh, 02.50.Le
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Simple models of neural networks describe a wide vari
of phenomena in neurobiology and information theory. Ne
ral networks are systems of elements interacting by adap
couplings which are trained by a set of examples. After tra
ing they function as content addressable associative mem
as classifiers, or as prediction algorithms. Using method
statistical physics many of these phenomena have been
cidated analytically for infinitely large neural networks@1,2#.

Most studies of feed-forward neural networks have c
centrated on a single network learning a fixed rule, which
usually a second network, the so-called teacher. The tea
network is presenting examples, sets of input/output d
and the student network is adapting its weights to this se
examples. In an on-line training scenario each exampl
presented only once, hence training is a dynamical proc
@3,4#. The teacher network may also generate a time serie
output numbers@5,6#, and the student learns by following th
time series. The weights of the teacher network are fixed
this scenario.

Many phenomena in biology, social science, and co
puter science may be modeled by a system of interac
adaptive algorithms~see, e.g.,@7#!. However, little is known
about general properties of such systems. In this paper
derive an analytic solution of a system of interacting neu
networks. Each network is a simple perceptron with
N-dimensional weight vector. These networks receive
identical input vector, produce output bits, and learn fro
each other. In Sec. I each network is trained by the outpu
its neighbor, with a cyclic flow of information. By iteratin
the training step for randomly chosen input vectors, the
namical process relaxes to a stationary state. In the limi
N→` we describe the process by ordinary differential eq
tions for a few order parameters, similiar to the usu
student/teacher scenario@3,8#. We identify the symmetries o
the stationary state and find phase transitions when incr
ing the learning rate of the training steps.

In Secs. II and III we study different training scenari
with two interacting perceptrons and various learning al
PRE 621063-651X/2000/62~2!/2555~11!/$15.00
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rithms. In Sec. IV we apply the system of interacting n
works to a problem of game theory called the Minori
Game, which is derived from the El-Farol Bar proble
@9,10#. In this game, we consider a set of agents who hav
make a binary decision. Each agent wins only if he/she
longs to the minority of all decisions. This process is ite
ated. Each agent has to develop an algorithm which mak
decision according to the history of the global minority d
cisions. The problem recently received a lot of attention
the context of statistical physics@11#. Here we follow a
unique approach: Each agent uses a perceptron for ma
his/her decision, and each perceptron is trained on the mi
ity of all output bits.

I. MUTUAL LEARNING, SYMMETRIC CASE

In this section we investigate a system of interacting n
ral networks as follows: several identical networks are
ranged on an oriented ring. All networks receive an identi
input and produce different output according to their weig
vectors. Each network is trained by the output of its neigh
on the ring. This process is iterated until a stationary stat
reached in which the norms and angles between the we
vectors no longer change. We are interested in the prope
of this stationary state.

We consider the simplest feed-forward networks, an
semble ofK simple perceptrons, which are represented
N-dimensional weight vectorswi ( i 51, . . . ,K) and which
map a common input vectorx onto binary outputss i
5sgn(x•wi). As order parameters we use the normswi
5uwi u and the respective overlapsRi j 5wi•wj or cos(uij)
5wi•wj /wiwj . When only two perceptrons are considere
the subscript is dropped: cos(u)5w1•w2 /w1w2. The compo-
nents of the input vector~or pattern! are Gaussian with mea
0 and variance 1, yieldingx•x5O(N).

The updates are of the form

wi
15wi1~h i /N! f ~s i ,s!s x ~1!

for unnormalized weights or
2555 ©2000 The American Physical Society
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wi
15

wi1~h i /N! f ~s i ,s!s x

uwi1~h i /N! f ~s i ,s!s xu
~2!

for normalizedwi . The1 denotes a quantity after one lear
ing step,h i is the learning rate,s is the desired output, an
f (s i ,s), the so-called weight function, defines the learni
algorithm. We mostly usef 51 ~the Hebbian rule, calledH
from now on! and f 5Q(2s is) ~the perceptron learning
rule, abbreviatedP @1#!, and the respective variations whe
the wi are kept normalized, denoted asHN andPN , respec-
tively.

We derive differential equations for the order paramet
in the thermodynamic limitN→` by taking the scalar prod
uct of the update rules and introducing a time variablea
5p/N, wherep is the number of patterns shown so far. W
use the analytic tools which were previously developed
the teacher/student scenario@4,3#. If the order parameters ar
self-averaging~see@12# for criteria of self-averaging in this
context!, integrating over the distribution of patterns giv
deterministic differential equations for the order paramet
asN→`. The required averages are listed in the Append

A. Perceptron learning rule

We first restrict ourselves to two perceptrons that try
come to an agreement by learning the output of the res
tive other perceptron. For ruleP with identical learning rates
h15h25h, the update rule is

w1
15w11

h

N
x s2Q~2s1 s2!,

~3!

w2
15w21

h

N
x s1Q~2s1 s2!.

The sum of both vectors is conserved under this rule:
learning step takes place, it has the same direction and a
lute value, but different signs for the two vectors. This co
servation can be used to linkw1 andw2 to cos(u): assuming
that w15w25w and starting fromu05p/2, simple geom-
etry givesw0 /A25cos(u/2)w. The conservation is also vis
ible in the differential equations that can be derived using
described formalism:

dw1

da
52

h

A2p
@12cos~u!#1

h2u

2w1p
, ~4!

dw2

da
52

h

A2p
@12cos~u!#1

h2u

2w2p
, ~5!

dR

da
5

h

A2p
@12cos~u!#~w11w2!2h2

u

p
. ~6!

If the right-hand side of Eqs.~4! and~5! vanish, so does Eq
~6!. There is a curve of fixed points of the system given
the equation

w5
h

A2p

u

12cos~u!
. ~7!
s

r

s
.
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a
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-
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Using the relationw5w0 /@A2 cos(u/2)#, this can be solved
numerically to give the fixed point of cos(u) as a function of
the scaled learning rateh/w0, as shown in Fig. 1. For smal
learning rates, the perceptrons come to good agreem
while largeh leads to antiparallel vectors.

Geometrically, this can be understood as follows: ea
learning step has a component parallel to the plane span
by w1 and w2, which decreases the distance between
vectors, and a perpendicular component, which increases
distance~see Fig. 2!. Equilibrium is reached when a typica
learning step no longer changes the angle, i.e., the vec
stay on a cone aroundw11w2. The radius of this cone in-
creases with growingh.

B. Perceptron learning with normalized weights

A similar calculation can be done for the perceptr
learning rule with normalized weights (PN), where the
length wi of the weight vectors is set to 1 after each ste
The perceptrons move on a hypersphere of radius 1; in e
librium, the average learning step leads back onto that sp
before the vectors are normalized again.

We derive the following differential equation forR
5cos(u):

FIG. 1. Mutual learning with ruleP ~see Secs. I A and I C!:
comparison between Eqs.~7! and ~10! and the stationary state in
simulations withN5100 anda.75.

FIG. 2. Mutual learning with ruleP: sketch of the geometrica
interpretation. See Sec. I A.
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FIG. 3. Mutual learning with rulePN ~cf.
Secs. I B and I C!: the system follows Eq.~9! for
h,hc . Simulations usedN5100.
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dR

da
5~R11!SA2

p
h~12R!2h2

u

p D . ~8!

Fixed points areR51, R521, and

h

A2p

u

12cos~u!
51. ~9!

It is not a coincidence that this is equivalent to Eq.~7! if w is
set to 1. The fixed point of Eq.~9! at R51 is repulsive; the
one atR521 is unstable forh,4/A2p>1.60. A solution
of Eq. ~9! can only be found forh<hc>1.816, which cor-
responds to cos(u)>20.689.

Simulations show that the system relaxes to the fix
point given by Eq.~9! for h,hc and jumps toR521 for
largerh ~see Fig. 3!. This behavior shows the characteristi
of a first-order phase transition.

Hence for small learning rates the two perceptrons re
to a state of nearly complete agreement,u'0. Increasingh
leads to a nonzero angle between the two vectors upu
'133°. At this rate the system jumps to complete disagr
ment,u5180°.

C. Mutual learning on a ring

The mutual learning scenario can be generalized toK per-
ceptrons: perceptroni learns from perceptroni 11 if they
disagree, with cyclic boundary conditions. Under ruleP, the
total sum of vectors is conserved again: as many percept
take a step in one direction as in the opposite.

Performing the necessary averages for the equation
motion would involve Gaussian integrals overK21 corre-
lated variables withQ functions—it is not clear to us
whether this can be done analytically in general cases. H
ever, we find in simulations that the fixed point for ruleP is
completely symmetric: there is only one angleu between all
pairs of perceptrons. Assuming that relation~7! still holds,
and using the conservation of(wi , one can derive
d

x

e-

ns

of

-

h

A2p

u

12cos~u!
5

w0

A11~K21!cos~u!
. ~10!

The largest angle that the perceptrons can take is cou)
521/(K21), corresponding to aK-cornered hypertetrahe
dron. This happens whenu(wi u is negligible with respect to
wi . Simulations confirm that Eq.~10! holds, as can be see
in Fig. 1

Similar to the case of two networks, all perceptrons ag
with each other for small learning rateh→0. For larger rates
the system relaxes to a state of high symmetry where
mutual angles between theK weight vectors are identica
u i j 5u. Note that the symmetry is higher than the topology
the flow of information~the ring!. For high ratesh→` the
system relaxes to a state of maximal disagreement, i.e.
largest possible mutual angleu that is still compatible with a
symmetric arrangement.

For rulePN , the sum of the weights is not preserved. T
fixed point of the dynamics follows the curve for two no
malized weights described by Eq.~9! in a completely sym-
metric configuration. When the hypertetrahedron angle
reached and(wi vanishes, the symmetry is partly broke
There are now different angles to nearest neighbors,
nearest neighbors, etc., so the angles split up into (K21)/2
different branches for oddK and K/221 for evenK. Note
that the system still has the symmetry of the ring.

With odd K, increasingh increases the angle betwe
nearest neighbors, up to some limit value. This angle is
the maximum nearest-neighbor angle allowed for by the g
metric constraints, but seems to decrease with increasinK.

In the case of evenK, simulations show a second tran
tion at some higher value ofh, where the vectors split int
two antiparallel clusters, thus maximizing the neare
neighbor angle. The learning rate at which this transit
typically appears during the run of the program increa
with N. The conclusion is that the antiparallel fixed point
not stable in theN→` limit, but de facto stable in simula
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tions because the self-averaging property of the ordinary
ferential equations~ODEs! breaks down at this point.

One may ask which symmetries survive if the perceptr
are allowed to have different individual learning rates.
close look reveals that for ruleP, there is a more genera
conserved quantity:( i

Kwi /h i . Simulations show that the
anglesu i j again relax to a completely symmetric configur
tion depending on the averageh and the initial value of the
new conserved quantity, while the normswi are proportional
to the respective learning ratesh i . For rulePN , variations in
the learning rates not only lead to slightly different curv
for each of the angles with individually differenthc , they
also suppress the transition to the antiparallel state tha
observed for evenK.

D. Hebbian learning

The reason whyP andPN lead to antiparallel orientation
of the weight vectors for larger learning rates is that th
concentrate on cases where the networks disagree. A
rithms that reinforce what both networks agree on are m
successful, as can be seen for ruleH for two perceptrons.

The differential equations are

dwi

da
5hA2

p
cos~u!1

h2

2wi
,

~11!
dR

da
5hA2

p
~w11w2!1h2S 12

2u

p D .

This system has no common fixed point, which means
thewi grow without bounds. The asymptotic behavior can
seen from the equation for cos(u). Assuming thatw15w2
5w, we find

d cos~u!

da
5

h

w

4

A2p
@12cos~u!2#1

h2

w2 S 12cos~u!2
2u

p D .

~12!

By taking w'A2/pha, the ODE leads to 12cos(u)}a24

for a→`. This means thatu}a22.
Simulations agree with the numerical integration of E

~11!, with the exception of very largea and correspondingly
small u ~see Fig. 4!. This is not surprising, since thea22

decay is an effect of patterns that are classified differen
As long as the perceptrons give the same output on all
terns,w1 and w2 grow linearly, but the differencew12w2
does not change, leading tou}a21. This is observed in
simulations for small angles, where no patterns happene
be classified differently on the considered timescale. Ma
ematically, this is related to a breakdown of the se
averaging properties of Eqs.~11! at the pointu50.

II. MUTUAL LEARNING, COMPETITION

In the previous section, all of the neural networks beha
in the same way. Each perceptron tries to learn the outpu
its neighbor, and only the initial weight vectors are chos
randomly and differ from each other. Now we investigate
scenario where two networks behave differently. Networ
is trying to simulate network 2 while 2 is trained on th
if-
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opposite of the opinion of 1. This scenario describes a co
petition between two adaptive algorithms. If 2 is complete
successful, the overlap is cos(u)521, and perceptron 1 al
ways fails in its prediction, and vice versa. A motivatio
from game theory can be drawn from the game of pen
matching, where both players make a binary decision sim
taneously. One player wins if the decisions are the same
other if they are different.

A. Rule P

If both perceptrons use ruleP for their respective learning
aim, the update rules are

w1
15w11~h1 /N!xs2Q~2s1s2!,

~13!

w2
15w22~h2 /N!xs1Q~s1s2!.

The corresponding differential equations for the order
rameters are

dw1

da
52

h1

A2p
@12cos~u!#1

h1
2

2w1

u

p
,

dw2

da
52

h2

A2p
@11cos~u!#1

h2
2

2w2
S 12

u

p D , ~14!

dR

da
5

h1w2

A2p
@12cos~u!#2

h2w1

A2p
@11cos~u!#.

The common fixed point for these equations iswi

5A2ph i /4, cos(u)50. This is hardly surprising, since non
of the perceptrons has a better algorithm than the other.
learning rate only rescales the weight vectors; the ra
h i /wi , which determines how fast the direction ofwi in
weight space can change, is independent ofh at the fixed
point.

FIG. 4. Mutual learning with ruleH: simulations withN5100
show good agreement with Eqs.~11!, except for very small angles
u.
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B. Rule H

The picture is slightly different if both perceptrons lea
from every pattern they see. The resulting differential eq
tions are

dw1

da
5A2

p
h1 cos~u!1

h1
2

2w1
,

dw2

da
52A2

p
h2 cos~u!1

h2
2

2w2
, ~15!

dR

da
5A2

p
h1w22A2

p
h2w12h1h2~p22u!.

The fixed point of R is reached if u5p/2 and h1 /w1
5h2 /w2, i.e., the vectors are perpendicular and the sca
learning ratesh i /wi are the same for both perceptrons. U
der these conditions, the equations forwi can be solved:wi

5h i@a1(wi ,0 /h1)2#1/2, sowi shows theAa scaling typical
for random walks. Geometrically, the Hebb rule adds corr
tions to the weight vector that are on average parallel to
teacher vector. Since the teacher is moving at the same
gular velocity as the student, the movement of both vec
resembles a random walk. Again,h only sets the tempora
and spatial scale.

C. Rule P versus rule H

The result of the competition becomes more interest
when both perceptrons use different algorithms. For
ample, we let perceptron 1 use ruleP, while 2 usesH. The
derivation of the differential equations is again straightf
ward,

dw1

da
52

h1

A2p
@12cos~u!#1

h1
2

2w1

u

p
,

dw2

da
52A2

p
h2 cos~u!1

h2
2

2w2
, ~16!

dR

da
52A2

p
h2w11

h1w2

A2p
@12cos~u!#1

h1h2u

p
.

They have a common fixed point defined by

u
cos~u!2

@12cos~u!#2
5

p

4
,

w15
h1

A2p

u

12cos~u!
, ~17!

w25
A2p

4

h2

cos~u!
.

These equations can be solved numerically and yield cou)
> 0.459, w1> 0.806h1, andw2>1.37h2. Although percep-
tron 1 makes no use of many of the presented patte
-

d
-

-
e
n-

rs

g
-

-

s,

whereas perceptron 2 incorporates all of then, 1 wins
competition: the perceptron using ruleH has a smallerh/w
ratio and is thus less flexible.

D. Normalized weights

By setting the weights to 1 after each learning step, a n
length scale is introduced, leading to a more complex dep
dence of the solution on the learning rates. For brevity,
only give the differential equations for the different learnin
rules and explain some common features. If both netwo
use rulePN , the ODE is

dR

da
5

1

A2p
@h1~12R!2h2~11R!#

1
R

A2p
@h1~12R!1h2~11R!#

2
R

2p
@h1

2u1h2
2~p2u!#, ~18!

for rule HN we find

dR

da
5A2

p
~h22h1!~R221!2

R

2
~h1

21h2
2!

2h1h2S 12
2u

p D , ~19!

and if rule PN is used by perceptron 1 andHN by 2, the
equation is

dR

da
5RSA2

p
h2R2

h2
2

2
1

h1

A2p
~12R!2

h1
2

2

u

p D
1

h1

A2p
~12R!2A2

p
h21h1h2

u

p
. ~20!

The behavior of the fixed point is similar in all the followin
cases~see Fig. 5!:

FIG. 5. Competing learning aims with normalized weights:h2 is
set to 1 whileh1 is varied. The analytical curves are fixed points
Eqs.~18!, ~19!, and~20!, respectively.
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~i! If, say, h2 is fixed andh1→0, R goes to a valueR
Þ21. This is expected, since bothPN andHN only achieve
finite values ofR for fixed teachers.

~ii ! If both perceptrons use the same algorithm with
same learning rate, the result isR50, as expected.

~iii ! If h i→` for either i, R→0. Infinite learning rate
means that in every time step the perceptron discards al
information it previously had, replacing it with the curre
6x. Theoretically, that makes it predictable for the oth
network; in practice, both agents are confused. The not
exception is the case ofPN vs. HN , where a nonvanishingR
results if bothh i→` with a finite ratioh1 /h2.

III. CONFUSED TEACHER

For any prediction algorithm there is a bit sequence
which this algorithm fails completely, with 100% error@13#.
In fact, such a sequence is easily constructed: Just take
opposite of the predicted bit at each time step. In Ref.@13# a
perceptron was used for the prediction algorithm.

Here we do not consider bit sequences. However, it tu
out that many statistical properties of the prediction alg
rithm are similar when random inputs are used instead o
window of the antipredictable bit sequence. Hence we c
sider the following scenario: Preceptron 1 is trained on
negative of its own output. Perceptron 2 is trained on
output of perceptron 1.

This is similar to the teacher/student model where
teacher weight vector performs a random walk@8#. But here
the teacher is ‘‘confused’’; it does not believe its own op
ion and learns the opposite of it.

The update rule of perceptron 1 now only depends on
own output,

w1
15w12~h/N!xs1 . ~21!

Geometrically speaking, the vector performs a directed r
dom walk in which every learning step has a negative ov
lap with the current vector. An equilibrium length is reach
when a typical learning step leads back onto the surface o
N-dimensional hypersphere. This fixed point ofw1 is easily
calculated to be

w15A2ph/4>0.6267h, ~22!

and the weight vector typically moves on the surface o
hypersphere of that radius.

A. Rule H

What happens if a second perceptron tries to follow
output of the confused teacher? Again, the results dep
entirely on the used algorithm. The simplest case, the H
rule, also has a geometrical interpretation that is revealed
a look at the update rule,

w1
15w12~h/N!xs1 ,

~23!
w2

15w21~h/N!xs1 .

As in Sec. I A, the sum of both vectors is constant, so th
is a class of solutions to the ODEs
e

he

r
le

r

the

s
-
a
-

e
e

e

ts

n-
r-

an

a

e
nd
b

by

e

dw1

da
52A2

p
h1

h2

2w1
,

dw2

da
5A2

p
h cos~u!1

h2

2w2
, ~24!

dR

da
5A2

p
h@w12w2 cos~u!#1h2

defined by w1,f5A2ph/4 and w2,f52A2ph/@4 cos(u)#.
The solution is given by the initial condition, i.e., the initia
sum uw11w2u. The fixed point angle can be calculated b
applying the cosine theorem to a triangle with side leng
w1,f , w2,f , and uw11w2u; starting from perpendicular vec
tors of normw0, one finds

cos~u!52F11
16

p S w0

h D 2G21/2

. ~25!

Geometrically, for large learning rateh both norms become
much larger thanw0; the only way to achieve this while
keeping the sum constant is a large angle. For smallh, w1
becomes very small compared to the sum, and thus tow2. So
the direction ofw2 stays nearly unchanged whilew1 per-
forms its random walk, leading to nearly perpendicular ve
tors on average.

B. Rule P

If perceptron 2 uses ruleP, the sum of the vectors is no
conserved, and a simple geometrical interpretation is
possible. However, the equations of motion can still
solved,

dw1

da
52A2

p
h1

h2

2w1
,

dw2

da
52

h

A2p
@12cos~u!#1

h2

2w2

u

p
, ~26!

dR

da
5A2

p
h cos~u!2

w1h

A2p
~12c!2h2

u

p
.

The fixed point of cos(u) is given by the solution of 4u/p
5@11cos(u)#2, independent fromh. The numerical solution
is u>0.777p, cos(u)520.761, w250.552h ~in accordance
with Ref. @13#, where a special case of this problem w
solved!. Remarkably, the generalization error is larger th
50%—even the ‘‘smarter’’ perceptron learning rule predic
the behavior of the confused teacher with less success
random guessing would.

C. Optimal learning rule

This raises an interesting question: is there any ‘‘reas
able’’ algorithm for perceptrons that allows them to track t
confused teacher, i.e., an algorithm that is not aware of
teacher’s self-avoiding motion but tries to find it assuming
is stationary? If there are such algorithms that achieve a p
tive overlap, one of them has to be the rule that optimiz
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student-teacher overlap in each time step—the opti
weight function derived by Kinouchi and Caticha@14#:

f opt5
w2 tan~u!

A2p
expF2

~x•w2!2

2 tan~u!2 w2
2G

3
1

F$s1x•w2 /@w2 tan~u!#%
, ~27!

where F(x)5*2`
x exp(2z2/2)/A2p dz. If w1 is set to its

fixed point for simplicity’s sake, the calculation yields th
following ODEs for cos(u) andw2:

d cos~u!

da
5

1

4p

sin~u!2

cos~u!
I 2

2

A2pw1 cos~u!
, ~28!

dw2

da
5

w2

4p
tan~u!2 I , ~29!

where

I 5E
2`

` 1

A2p

3expS 2
11cos~u!2

2 sin~u!2
x2D 1

F@2x cot~u!#F@x cot~u!#
dx.

~30!

Calculating whether cos(u)50 is in fact a fixed point of the
confused teacher and/or optimal student scenario is prob
atic, since the optimal weight function~27! diverges atu
5p/2. However, the numerical solution of Eqs.~28! and
~29! shows clearly that even starting from cos(u)51, the sys-
tem evolves towardsu5p/2, which indeed seems to be th
upper limit for success. Simulations of the learning proc
again agree well with our theory~see Fig. 6!.

The previous examples have shown that learning ru
that work well with a stationary teacher give negative or z

FIG. 6. Confused teacher: Even with the optimal weight fun
tion ~27! the student only achieves an overlap of cos(u)50. Starting
values arew15w25A2p/4, cos(u)51, h51. Simulations are per-
formed withN52000; the statistical error is smaller than the size
the symbols.
al

m-

s

s
o

overlap with the confused teacher. However, a shrewd
dent could use a learning rule that learns the opposite of
teacher’s output to achieve a positive overlap, and thu
prediction accuracy of more than 50%.

D. Rule H N

There is another way of achieving a positive overlap w
the confused teacher with simple learning rules: if t
teacher perceptron is ‘‘slowed down’’ by keeping its weigh
normalized and settingh to some small value, a student u
ing PN or HN can track the teacher nearly perfectly for ve
small learning rates. For simplicity’s sake, let us considerHN
with identical learning rates. The differential equation forR
is

dR

da
5~R11!SA2

p
~12R!h2h2D . ~31!

The fixed points areR521 or R52A2/ph11. This result
is again confirmed by simulations as seen in Fig. 7. The fi
point goes to 1 ash→0.

IV. PERCEPTRONS IN THE MINORITY PROBLEM

The concept of interacting neural networks can be app
to a problem that has received much attention recently:
El Farol Bar problem@9#. The problem was originally in-
spired by a popular bar that has a limited capacity: if t
many people attend, it becomes crowded, and patrons do
enjoy the evening. In a more special formulation, each ag
out of a population ofK decides in each time step~each
Saturday evening! to take one of two alternatives~go to the
bar or stay at home!. Those agents who are in the minori
win, the others lose. Decisions are made independently;
only information available to agents is the decision of t
minority in the lastN time steps.

Many papers~see, e.g.,@11#! investigated a specific real
ization of the model called the Minority Game. In this mod
each agent has a small number of randomly chosen dec
tables~Boolean functions! that prescribe an action based o

-

f

FIG. 7. Confused teacher: If the teacher is slowed down
normalizing its weight, it can be tracked by a student using, e
rule HN . The figure shows the fixed point of Eq.~31! and simula-
tions with N5100.
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the previous history, and which of the tables is used is
cided according to how successful each one was in
course of the game. It turned out that the success of the g
depends on the ratio between the number of players and
size of the history window, and general conclusions on
behavior of crowded markets were drawn@15,16#.

We will discuss a different approach that yields differe
behavior: Each agenti is represented by a perceptronwi that
uses the time seriesSt5(St ,St21 , . . . ,St2N11) of past mi-
nority decisions to make a prediction on the next time step
then learns the output of the minority according to so
learning rule.

In our approach all of the agents are flexible in their d
cisions. Each agent uses an identical adaptive algori
which is trained by the history of the game, the only info
mation available to each of the agents. However, each a
uses a different randomly chosen initial state of its netwo
If all weight vectors of the networks would collapse, a
agents would make the same decision, and all would los
all weights remained in the random initial state, each ag
would make a random guess which yields a reasonable
formance of the system. Our calculation shows that train
can improve the performance of the system compared to
random state.

Following Ref. @17#, we replace the historySt by a ran-
dom vectorx. Simulations show that this changes the resu
only quantitatively, if at all.

This strategy fulfills the restrictions that the original pro
lem posed: the agents do not communicate except thro
majority decisions, and individual decisions are based on
perience~induction or learning! rather than perfect knowl
edge of the system~deduction!. However, since each playe
uses only one strategy whose parameters can be fine-tun
the current environment rather than a set of completely
ferent strategies, no quenched bias in the players’ behavi
to be expected.

A. General notes on performance

The commonly used measure of collaboration in the
nority problem is the average standard deviation of the s
of outputs of all agents:

s2

K
5

1

K K S (
i 51

K

s i D 2L . ~32!

If each agent makes random decisions, one getss2/K51.
The probability of two perceptronsi and j giving the same
output on a random pattern is 12u i j /p. Any ensemble of
vectorswi can be thought of as centered around a cente
massC5( i 51

K wi /K with a normC ~for random vectors of
length 1,C would be of order 1/AK). The weights can then
be written aswi5gi1C, with ( i 51

K gi50. For the sake of
simplicity, we will assume a symmetrical configuration wi
gi51 andgi•gj521/(K21) for iÞ j . @An ensemble of ran-
domly chosen vectors of norm 1 would givegi

25121/K
6O(1/AN) andgi•gj521/K6O(1/AN).#

The average overlap between different weights is nowR
5C221/(K21), their average normwi5AC211. With
this, Eq.~32! can be evaluated
-
e

me
he
e

t

It
e

-
m

nt
.
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nt
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x-

to
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s2

K
5

1

K K (
i 51

K

11(
i 51

K

(
j Þ i

K

sgn~x•wi !sgn~x•wj !L
x

511~K21!F12
2

p
arccosS C221/~K21!

C211
D G . ~33!

If C is set to 0 andK is large, a linear expansion of the arcc
term in Eq.~33! gives sopt

2 /K'122/p>0.363. The small
anticorrelations~of order 1/K) between the vectors suffice t
change the prefactor in the standard deviation.

If C is much larger thang, there is a strong correlation
between the perceptrons. Most perceptrons will agree w
the classification by the center-of-mass sgn(x•C). As C
→`, s2/K saturates atK.

B. Hebbian learning

Now each perceptron is trying to learn the decision of
minority according to ruleH. S denotes the majority deci
sion:

wi
15wi2

h

M
x sgnS (

j 51

N

sgn~x•wj !D 5wi2
h

M
x S.

~34!

As the same correction is added to each weight vector, t
mutual distances remain unchanged. Only the center of m
is shifted. We now treatC as an order parameter:

C15(
i 51

K wi

N
2

h

M
x s, ~35!

C215C22
2h

N
x•CS1

h2

N
. ~36!

To average overx•CS in the thermodynamic limit, we intro-
duce a fieldh5x•C and average overx for fixed h:

x•CS5uhusgnS (
i 51

K

sgn~h!sgn~x•gi1h!D . ~37!

The quantity sgn(h)sgn(x•gi1h) is a random variable with
mean erf(uhu/A2) and variance 12erf(uhu/A2)2. In a linear
approximation for smalluhu, we replace this by mean
A2/puhu and variance 1.

For sufficiently largeK, one can use the central limit theo
rem to show that( i 51

K sgn(h)sgn(x•gi1h) becomes a
Gaussian random variable with meanA2/pKuhu. Since the
terms of the sum in Eq.~37! are anticorrelated rather tha
independent, the variance turns out to be (122/p)K rather
thanK, analogously to Eq.~33!. This yields

K sgnS (
i 51

K

sgn~h!sgn~x•gi1h!D L 5erf@AK/~p22!uhu#.

~38!

Sinceh is a Gaussian variable with mean 0 and varianceC2,
the average overhS can now be evaluated. We find the fo
lowing differential equation for the norm of the center
mass:
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dC2

da
52

4h

A2p
A 2K/~p22!

112K~p22!C2
C21h2. ~39!

The fixed point ofC, which can be plugged into Eq.~33! to
get s2/K(h,K), is

C5
Ap

4
hA11A11

16~p22!

pKh2
~40!

~see Figs. 8 and 9!. If C is large, the majority of perceptron
will usually make the same decision asC, which then be-
haves like the single confused perceptron:C→A2ph/4 if
Kh2→`, compare to Eq.~22!.

For small C the majority may not coincide with
sgn(x•C). In that case, the learning step has a positive ov
lap with C, leading toC}Ah ash→0.

The derivation given is only correct ifN→` and K is
large. However, simulations show very good agreement e
for K521 andN5100 ~see Fig. 9!. For a smaller number o
dimensionsN, there is even a tendency towards smal

FIG. 8. Fixed point ofC vs h: simulations withN5100 agree
well with Eq. ~40!. The limit for K→` is C5A2ph/4.

FIG. 9. Fixed point ofs2/K vs h: the combination of Eqs.~33!
and ~40! shows that sufficiently small learning rates lead
s2/K,1.
r-

n

r

s2/K. This can be understood in the extreme case ofN51:
Each perceptron is characterized by one number; the
come is decided by whether the majority of numbers
smaller than 0 or larger, regardless of the ‘‘pattern.’’ T
learning step consists of shifting all numbers up or down
the same amount. In the case of smallh, the fixed point is
characterized by (N21)/2 players firmly on one side of th
origin, (N21)/2 on the other side, and one unfortunate lo
who changes sides at every step.

Interestingly, if the time series generated by the minor
decisions is used as patterns, the functionss2(C) andC(h)
are quantitatively different from those found for random p
terns. However, in the final results2(h) no disagreemen
can be noticed~see Fig. 9!.

The presented Hebb algorithm may appear too simpli
and the chosen initial conditions too artificial. It must ther
fore be emphasized that there are other learning algorit
that lead to the same anticorrelated state. In particula
variation of rule PN has proven successful in simulation
~see Fig. 10!: all perceptrons that are on the minority sid
take a learning step, and weights are kept normalized.
regular ruleP where perceptrons on the majority side mov
however, leads to strong clustering ands2/K}K.

The absence of scaling behavior ifN.K and the fact that
smaller dimensions~corresponding to smaller memory of th
time series! even improve the results show that the conc
sions drawn from the ‘‘conventional’’ Minority Game do no
apply to all conceivable strategies for the Bar problem. W
think that the dependence ofs2/K on the ratio between
available strategies and players is caused by the us
quenched strategies and will not arise in any scenario
which agents stick to one strategy which is fine-tuned
some learning process. The case ofN51 implies that there
are strategies that gives2/K}1/K. We will elaborate this
point in another publication.

V. SUMMARY

We have investigated several scenarios of mutually in
acting neural networks. Using perceptrons with well-know
on-line training algorithms in the limit of infinite system

FIG. 10. Using a modifiedPN algorithm improves the results
compared to Fig. 9. Simulations again useN5100.
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size, we derived exact equations of motion for the dynam
of order parameters that describe the properties of the
tem. In the first scenario a system ofK perceptrons is placed
on a ring. All perceptrons receive the same input and e
perceptron is trained by the output of its neighbor on
ring. We have used two well-known training algorithms: t
perceptron rule which concentrates on examples where
networks disagree, and the Hebbian rule where each exa
changes the weights. We find that with unnormaliz
weights the system relaxes to a stationary state of high s
metry: each perceptron has the same overlap with all oth
The overlap depends on the learning rate: with increas
h the perceptrons increase their mutual angle as muc
possible.

For the perceptron learning rule with normalized weig
we find phase transitions with increasing learning rateh. For
large values ofh, the symmetry is broken, but the symmet
of the ring is still conserved. For the Hebbian rule we find
different behavior. The lengths of the weights diverge,
mutual angles shrink to zero, and the perceptrons eventu
come to perfect agreement in the limit of infinitely man
training examples.

We furthermore study the behavior of perceptrons t
pursue competing learning aims for different learning alg
rithms. If two perceptrons follow mutually exclusive lear
ing aims using the same algorithm, a draw results. If they
different rules, the outcome depends on factors like the
caled learning rateh/w. We find that a perceptron that learn
the opposite of its own prediction cannot be tracked b
student perceptron that learns the positive output of the c
fused teacher: all rules achieve a negative overlap.

Finally an ensemble of interacting perceptrons is used
solve a model of a closed market. Each agent uses a pe
tron which is trained on the decision of the minority. O
analytic solution shows that the system relaxes to a stat
ary state which yields a good performance of the system
small learning ratesh. In contrast to the Minority Game o
Refs. @11# our approach leads to identical profits for a
agents in the long run. In addition, the performance of
algorithm is insensitive to the size of the history windo
used for the decision.

This paper is a first step towards more complex model
interacting neural networks. We have presented analytic
accessible cases which may open the road to a genera
derstanding of interacting adaptive systems with possible
plications in biology, computer science, and economics.
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APPENDIX

The following averages are used in our calculations
derive deterministic differential equations from the upda
rules. The angled brackets denote averages over isotropi
distributed pattern vectors. In the limitN→`, w1•x and
w2•x are correlated Gaussian random variables, and the
erages can be calculated by integrating over their joint pr
ability distribution with appropriate boundaries. In man
cases, simple geometrical calculations give the same re
with less effort:

^x•w1 s2Q~2s1s2!&52
w1

A2p
@12cos~u!#, ~A1!

^x•x Q~2s1s2!&5N
u

p
, ~A2!

^x•w1 s1Q~s1s2!&5
w1

A2p
@11cos~u!# , ~A3!

^x•x Q~s1s2!&5NS 12
u

p D , ~A4!

^x•w1 s1&5A2

p
w1 , ~A5!

^x•w1 s2&5A2

p
w1 cos~u!, ~A6!

^ f opt&5
2w2

A2p

sin~u!2

cos~u!
, ~A7!

^ f optx•w2 s1&50, ~A8!

I 5E
2`

` 1

A2p
expS 2

11cos~u!2

2 sin~u!2
x2D

3$F@2x cot~u!#F@x cot~u!#%21dx, ~A9!

^ f opt
2 &5

w2
2

2p
tan~u!2 I , ~A10!

^ f optx•w1 s1&5
w1w2

2p

sin~u!2

cos~u!
I . ~A11!
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